zh School of
Engineering

aw InES Institute of
Embedded Systems

Coding Guidelines

CT Team: A. Gieriet, J. Gruber, R. Giibeli, M. Meli, M. Rosenthal, A. Rist, J. Scheier,
M. Thaler

InES Institute of
Embedded Systems

At y 4 §
Motivation AW

// I have no idea what this crappy
/ / function does and how and why it
< works

But it seems to be important.

//

GO0D COMMENTS ARE
ESSENTIAL TO DELIVER
HIGH QUALITY.

Geek and poke

2 <1 inW, Computer Engineering 2 11.02.2014

Why Coding Guidelines? az\”

® Reduce the number of bugs
* Robustness
* Correctness
* Maintainability
m Facilitate code reading within a team
* Takes less time to understand another team member's code
= Improve portability
* Reuse of code on other HW platforms
m Enforce by

* Automated scans (part of static code checking)
* Peer reviews

3 ZHAW, Computer Engineering 2 11.02.2014

. . zh st
Coding Guidelines AW =

m Rules are subjective
* Different organizations have different guidelines
2 "When in Rome do as the Romans do"

ZHAW, Computer Engineering 2 11.02.2014

A zh gchpol of
nglneerlng
ppearance AW =

2 Indentation
* 4 Spaces, no Tabs

= Maximum of 80 characters per line
* Print-outs
* On-screen code diff

= No more than one statement per line
* Readability and clarity

m Use parentheses to aid clarity

* Do not rely on C's operator precedence rules
- They may not be obvious to the maintainer

5 ZHAW, Computer Engineering 2 11.02.2014

https://parma.zhaw.ch/trac/standards/wiki/Coding_Style

Braces zh s
ngineering
AW =i

= Non-function statement blocks
®1f, else, switch, for, while, do
* opening last on line
* closing firstonline

* always use braces also for single statements and empty
statements

- reduces risk during code changes

if (x == y) { if ==
P =49 = 9
} — T~

6 ZHAW, Computer Engineering 2 11.02.2014

School of

Braces Zh s
ngineering

AW e

® Functions

* opening beginning of next line
* closing firstonline

int32 t function(int32 t x)
{

body of function
}

ZHAW, Computer Engineering 2 11.02.2014

School of

Braces Zh s
ngineering

AW e

m The closing brace is empty on a line of its own,

* except in cases where it is followed by a continuation of the same
statement

- e.g. a "while" in a do-statement or an "else" in an if-statement

do {
body of do-loop
} while (condition) ;

if (x == y) {
} eléé.if (x > vy) {

} eléé.{

}

ZHAW, Computer Engineering 2 11.02.2014

Braces azﬁ

Embedded Systems

m struct/ enum

typedef enum {
RED,
GREEN

} colors;

struct entry {
uint32 t index,
uint32 t value

};

9 ZHAW, Computer Engineering 2 11.02.2014

School of

Spaces zh s
p ngineering
AW o

m Mostly function-versus-keyword usage

m Use space after keywords
* if, switch, case, for, do, while

m No space with sizeof, typeof, alignof, or attribute
* as they look somewhat like functions

s = sizeof (struct file);

= Pointer declaration
* *adjacent to data name or function name

uint8 t *ptr;
uint32 t parse(uint8 t *ptr, uint8 t **retptr);
uint8 t *match (uint8 t *s);

10 ZHAW, Computer Engineering 2 11.02.2014

School of

Spaces zh s
p ngineering
aAW =

m Use one space on each side of binary and ternary
operators

= + - < > * / % |
& A <= >= == 1= ?

= No space after unary operators

& * + - ~ ! sizeof typeof
alignof attribute defined

11 ZHAW, Computer Engineering 2 11.02.2014

Spaces zh s
nglneerlng
P AW e

m No space before postfix unary operators

m No space after prefix unary operators
++1;
—-P;

m No space around the "." and "->" structure member
operators

m Do not leave trailing whitespaces

12 ZHAW, Computer Engineering 2 11.02.2014

Functions Zh e

Embedded Systems

m Short and sweet
* i.e. no more than about 50 lines of code

Do just one thing
No more than 5-10 local variables
No more than 3 parameters

Function prototypes shall include parameter names
with their data types

® No more than 3 levels of indentation

13 ZHAW, Computer Engineering 2 11.02.2014

Functions zh s
ngineering
AW =i

m Use const to define call-by-reference function
parameters that should not be modified
®int32 t strlen(const int8 t s[]);

- strlen() does not modify any character of character array s

°* void display (mystruct const *param);

1) Same as void display(const mystruct *param); o
14 ZHAW, Computer Engineering 2 11.02.2014

Functions Zh e

Embedded Systems

= Just one exit point and it shall be at the bottom of the
function
* keyword return shall appear only once

m All 'private’ functions shall be defined static

* 'private’' > Functions that are only used within the module itself.
The function is an implementation detail
and not accessible from other modules

m A prototype shall be defined for each 'public' function
in the module header file module.h
* 'public' > Functions that are called by other modules.

The function prototypes are part of the module
interface.

15 ZHAW, Computer Engineering 2 11.02.2014

zh s,
Return Values AW e

Embedded Systems

m Shall be checked by the caller

= If the name of a function is an action or an imperative
command
* Function should return an error-code integer i.e. 0 for success and
-Exxx for failure.
- If possible error codes shall be based on the Posix Errorcode

- If self-defined error codes are being used they shall be properly
documented. In the header file for public functions or in the .c file for

private functions

- For example, "add work" is a command, and the add work ()
function returns 0 for success or -EBUSY for failure.

16 ZHAW, Computer Engineering 2 11.02.2014

Zh oot
Return Values aW o

= If the name of a function is a predicate
* Function should return a "succeeded" boolean.

* "PCI device present" is a predicate, and the
pci dev present () function returns 1 if it succeeds in finding

a matching device or O if it doesn't.
m Functions whose return value is the actual result of a
computation, rather than an indication of whether the
computation succeeded, are not subject to this rule.

* Generally they indicate failure by returning some out-of-range

result.
* Typical examples would be functions that return pointers; they use
NULL or the ERR_PTR mechanism to report failure.

17 ZHAW, Computer Engineering 2 11.02.2014

' zh o
Naming AW

InES Institute of
Embedded Systems

18

No macro name (#define) shall contain any
lowercase letters

Function and variable names shall not contain
uppercase letters

Use descriptive names for functions, global variables
and important local variables

Underscores shall be used to separate words in
names e.g. count active users|()

Use short names e.g. i for auxiliary local variables like
loop counters

Do not encode types In names. Let the compiler do
the type checking

ZHAW, Computer Engineering 2 11.02.2014

InES Institute of
Embedded Systems

zZh seeoer
Comments AW o

m All comments shall be in English
m C99 comments /] are allowed
= Explain WHAT your code does not HOW

* Don't repeat what the statement says in a comment.
* Assume that the reader is familiar with C

m Comments shall never be nested
m All assumptions shall be spelled out in comments
* or even better in a set of design-by-contract tests or assertions

m The interface of a public function shall be commented
next to the function prototype in the header file.

* The comment shall not be repeated next to the function definition
in the .c file

19 ZHAW, Computer Engineering 2 11.02.2014

T eS zh gchpol of_
ngineering
yp AW =

m Use fixed width C99 data types from stdint.h
® €.g. uint8 torint32 tratherthan unsigned char or int

m Type char shall be restricted to declarations and
operations on strings

m Bit-fields shall not be defined within signed integer
types

= None of the bit-wise operators shall be used to
manipulate signed integer data

° jie.donotuses, |, ~, ~, << and>>on signed integers

20 ZHAW, Computer Engineering 2 11.02.2014

T eS zh gchpol of_
ngineering
yp AW =

m Signed integers shall not be combined with unsigned
integers in comparisons or expressions

* Decimal constants meant to be unsigned should be declared with
an 'U' at the end

m Casts shall be done explicitly and accompanied by a
comment

m Use just one data declaration or one data definition
per line

* Allows a comment for each item.

21 ZHAW, Computer Engineering 2 11.02.2014

Header FIIeS Zh Eﬁgf’.féé’ﬁng

aw InES Institute of
Embedded Systems

22

There shall be precisely one header file for each
module

Each header file shall contain a preprocessor guard
against multiple inclusion

#ifndef ADC H
#define ADC H

#endif /* ADC H */

Only add #includes that are immediately needed for
this header file; do not add #includes for convenience
of others

Do not define or declare variables

° i.e.uint32 t count / extern uint32 t count

ZHAW, Computer Engineering 2 11.02.2014

Zh School of
Engineering

a InES Institute of
Embedded Systems

Coding Techniques

CT Team: A. Gieriet, J. Gruber, R. Giibeli, M. Meli, M. Rosenthal, A. Rist, J. Scheier,
M. Thaler

Module Traffic Light zh w

aw InES Institute of
Embedded Systems

m Encapsulation

24

* Interface
* Implementation

- .h
-2 .C

.h contains the
module interface

typedef enum ({

DARK = 0x00,
RED = 0x01,
YELLOW = 0x02,
GREEN = 0x03

} tl state type;

traffic light.h

traffic_light.h contains only those function
declarations (prototypes) and type definitions that are
strictly necessary for another module to know.

/** Set-up and initializes the traffic light */
void traffic light init(void);

/** Sets the specified state on the traffic light */
void traffic light set state(tl state type state);

/** Returns the current state of the traffic light */
tl state type traffic light get state(void);

ZHAW, Computer Engineering 2 11.02.2014

Mod ule T|_ .Cc contains the implementation

zh
aw

School of
Engineering

InES Institute of
Embedded Systems

static tl state type traffic light state;
static void lamps set(tl state type color);

#include "traffic light.h" traffic light.c

/** See description in header file */

void traffic light init(void) {
traffic light state = DARK; .
lamps set (DARK) ; static

Variable traffic light state and
function lamps set () are declared

} —> visible only inside module traffic_light

/** See description in header file */

void traffic light set state(tl state type state) {
traffic light state = state;
lamps set(state) ;

/** See description in header file */

tl state type traffic light get state (void) {
return traffic light state;

}

/** Turns the individual lamps on and off */
static void lamps set(tl state type state) {
// drive the lamps

}

25 ZHAW, Computer Engineering 2

11.02.2014

ic Lj zh .,
Module Traffic Light AW oo

Embedded Systems

m Caveat

* Example module 'traffic_light' can only be used for a single
instance of a traffic light

* Reason: traffic light state isa static variable
* In many embedded use cases having a single instance is fine
* But what if | have more than one traffic light?

26 ZHAW, Computer Engineering 2 11.02.2014

Module Traffic Light zh o,

aw InES Institute of
Embedded Systems

m Possible approach

* Include a static variable for each traffic light

static tl _state type tl state pedestrian;
static tl _state type tl state cars;

* Requires an additional parameter in many of the functions

typedef enum {
PEDESTRIAN,
CARS

} tl instance type;

void traffic light set state(tl_state type state,

tl instance type instance) {

* Alternatively an array of traffic lights could be used

static tl state type tl state[5];

27 ZHAW, Computer Engineering 2 11.02.2014

T zh o,
M Od § Ie T rafﬂ C L | g ht aw nES Insieof

= Now more than one traffic light is possible

* But each time we add an instance of a light we need to change
the module traffic_light

m Possible approach

* Extract the traffic light state from module traffic light and let the
module using traffic_light allocate the memory

#include traffic light.h

module using traffic_light
int32 t main(void) {
tl state type ped light;

void traffic light init(&ped light) ;
void traffic light set state(&ped light, RED);

28 ZHAW, Computer Engineering 2 11.02.2014

